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An NMR study on ethane and five isotopomers dissolved in the nematic liquid crystal Merck ZLI 1132 is
performed. A consistent set of dipolar and quadrupolar couplings is obtained. The dipolar couplings are corrected
for harmonic vibrational effects, while the contribution from the torsional motion is incorporated classically.
The corrected dipolar couplings cannot be understood in terms of a reasonable molecular structure unless
effects of the reorientation-vibration interaction are taken into account. Assuming that the reorientation-
vibration contributions that are known for the methyl group in methyl fluoride are transferable to ethane,
excellent agreement between observed and calculated dipolar couplings is obtained on the basis of the ethane
gas-phase structure. The observed and calculated deuterium quadrupolar couplings show discrepancies
supporting the notion that average electric field gradients are important in liquid-crystal solvents. An important
consequence of the transferability of the reorientation-vibration correlation is that in other molecules with
a methyl group the same procedure as for ethane can be followed. Inclusion of this effect generally removes
the need to interpret changes in observed dipolar couplings in terms of elusive chemical effects.

1. Introduction

Nuclear magnetic resonance (NMR) of small well-character-
ized molecules dissolved in liquid-crystal solvents is of interest
for a number of reasons. First, relative geometries that can be
compared to gas-phase structures can be obtained in the liquid
phase from the dipolar couplings observed for orientationally
ordered molecules. Despite the multitude of studies that have
been carried out, the extent to which the liquid-crystal environ-
ment affects solute structure is still a matter of debate.1 Because
zero-point vibrations typically have amplitudes of 0.1 Å, bond
lengths accurate to better than 0.01 Å can be obtained only if
averaging over the vibrational motion is dealt with appropriately.
Second, small probe molecules have proved to be extremely
valuable in elucidating details about the intermolecular aniso-
tropic potential in orientionally ordered liquids and about the
mechanisms that contribute to the orientational order of such
solute species.2,3 Seminal papers in this field have employed
molecular hydrogen4-6 and its deuterated7-9 and tritiated10

isotopomers, as well as methane and its isotopomers.11-13 From
such studies, it has become apparent that in liquid-crystal
solvents both short- and long-range interactions generally
contribute to the orientational order. Under favorable conditions,
these contributions can be obtained separately when different
liquid crystals and so-called “magic mixtures” are employed.2,3

In this paper, another relatively well characterized molecule,
ethane, CH3CH3, and five of its isotopomers, viz.13CH3CH3,

CH3CD3, CH3CH2D, 13CH3CH2D, and CH3
13CH2D, are studied

as solutes in nematic liquid crystals. When a series of molecules
is studied, a comparison of observed NMR coupling parameters,
such as dipolar and quadrupolar couplings, can be made only
if the various species are studied under exactly the same
experimental conditions. This is particularly true for isotopomers
of the same molecule because isotope dependences are generally
small. It would therefore be preferable to study all of the species
under consideration in the same NMR sample tube. Unfortu-
nately, with gases dissolved in liquid crystals there is an upper
limit to the pressure one can allow in a sealed NMR tube. In
addition, too much spectral overlap of signals resulting from
different species may pose an assignment problem. Hence, it is
usually necessary in practice to dissolve the isotopomers in more
than one sample tube. Under such conditions, careful attention
must be given to scaling the results obtained in the different
tubes. In our study, we have obtained a consistent set of carefully
scaled experimental NMR dipolar and quadrupolar couplings
for ethane and its isotopomers.

When considering molecular vibrational motions, a case of
special interest is the large-amplitude torsional motion associated
with the rotation of methyl groups. Clearly, ethane is a
benchmark example of a solute undergoing this type of internal
rotation. A study of ethane and its isotopomers is therefore
expected to be instructive. The torsional motion in ethane is a
one-dimensional vibrational mode belonging to theA1u irreduc-
ible representation of theD3d symmetry group that does not
interact with any of the other vibrational modes. For an accurate
determination of solute relative geometries, the application of
detailed vibrational corrections is crucial, and methods have been
developed to achieve this. The usual approach is valid for small-
amplitude vibrational motions and utilizes truncated Taylor
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expansions (see Section 3). The large-amplitude torsional mode
cannot be treated in the same manner and should be dealt with
separately (see Section 4). Moreover, the torsional motion can
couple with the overall rotational motion,14-16 and the possible
importance of this interaction should be considered. Because
ethane in the gas phase has been studied widely with an
abundance of physical methods, much is known about the
molecule. Key papers report therz structure,17 the height of the
torsional barrier,17 and the harmonic force field.18,19A detailed
discussion of the type of information required from molecular
force fields to obtain accurate structural parameters will be given
in Section 4.

The experimental dipolar couplings are analyzed by employ-
ing a model in which the gas-phaserz structure and the torsional
barrier from the literature are used. Harmonic vibrational
corrections are calculated from the available second-order force
field. The importance of harmonic vibrational corrections was
realized and implemented long ago.20-22 The torsional motion
is taken into account by classical averaging over the internal
rotational motion and by using appropriate Boltzmann weighting
factors. A model based on these molecular parameters is not
capable of satisfactorily reproducing the observed dipolar
couplings by solely adjusting the orientation parameters associ-
ated with each isotopomer. Attempts to adjust structural
parameters as well led to better quality fits but to unrealistic
structures and barriers. Clearly something is missing in this
approach.

An effect that is often neglected in NMR studies of orien-
tationally ordered species is the interaction between reorienta-
tional and vibrational motions. For highly symmetric solute
molecules such as CH4 and CD4, the orientational order in a
nematic liquid crystal is expected to be zero. Nevertheless, small
dipolar and quadrupolar splittings that arise from the reorienta-
tion-vibration coupling mechanism are observed. The detailed
quantum-mechanical basis for this effect has been derived in a
number of publications.11-13 Because the calculation of this so-
called “nonrigid” contribution to the dipolar coupling is
somewhat complicated, applications to only a few relatively
simple solutes have been carried out to date. In addition to the
work on the methanes, extensive studies of acetylene,23 ben-
zene,24 methyl fluoride,25 and their isotopomers should be
mentioned.

The implementation from first principles of the reorientation-
vibration coupling mechanism to ethane was considered. In this
case, the calculation involves a large number of unknown
interaction parameters and was therefore abandoned. Instead, a
novel approach was chosen, based on the fact that the force
field associated with a methyl group is essentially transferable
from one molecule to the next. This appears to be particularly
true for the methyl halides,26 hence the transfer of the reorienta-
tion-vibration couplings obtained in a previous extensive study
on methyl fluoride and its isotopomers25 was incorporated into
the ethane results. The ethane dipolar couplings corrected in
this manner were subjected to a fitting procedure that allowed
only orientation parameters and a scaling factor (vide infra) to
vary. The fit obtained was of excellent quality, indicating that
incorporation of reorientation-vibration coupling is crucial.
Moreover, the transferability of the methyl fluoride results to
methyl groups in other molecules appears to be a very attractive
possibility.

When molecular structures are deduced from liquid-crystal
NMR, discrepancies are often observed and ascribed to all sorts
of effects, such as specific chemical interactions, exchange
between several sites in the liquid-crystal environment, and the

like. It will be shown that in representative cases (e.g.,13CH3I)
inclusion of the reorientation-vibration coupling leads to a
situation where all the observations can be explained on the
basis of a single gas-phase structure, thus removing the need
for more elusive explanations.

Finally, an analysis of the quadrupolar couplings measured
for the deuterated ethanes leads to discrepancies very similar
to those obtained when deuterated hydrogens and methanes were
studied in nematic phases.7,12,13Our current results lend strong
support to the notion that average external electric field gradients
present in liquid-crystal solvents should not be ignored in the
interpretation of measured quadrupolar couplings.

2. Experimental Section

Ethane isotopomers CH3CH3, CH3CD3, and CH3CH2D were
used without further purification. Couplings to13C were obtained
in the proton NMR spectra from satellite lines of13C in natural
abundance. The liquid-crystal mixture Merck ZLI 1132 was used
without further purification;N-(4-ethoxybenzylidene)-4′-n-bu-
tylaniline (EBBA) was synthesized following the procedure
outlined in ref 27.

The gaseous solutes were condensed into 5-mm od NMR
tubes containing degassed liquid-crystal ZLI 1132 or EBBA and
flame sealed. NMR spectra were run on a Bruker MSL 400
spectrometer. The sample temperature was controlled at 298 K
for the ZLI 1132 samples (300 K for the EBBA sample) using
the Bruker air-flow system.

Spectral simulation software (Bruker PANIC for single-solute
samples and LEQUOR28 for a sample containing the three
isotopomers, CH3CH3, CH3CD3, and CH3CH2D) was used to
obtain the dipolar and quadrupolar couplings reported in Table
1. The indirect couplings utilized in the analysis are listed in
Table 1 and were taken from refs 29-33. The labeling of the
nuclei and the definition of the molecule-fixedx, y, andz axes
is given in Figure 1.

To obtain a self-consistent set of dipolar couplings, we scaled
values from samples containing a single solute using the value
of DHH for the same compound in the sample containing three
solutes. Spectra of13C isotopomers, obtained simultaneously
with the 12C spectrum from the13C satellites in the proton
spectrum, were scaled using the same factor as for the12C
isotopomer. To ensure identical conditions, a deuteron spectrum
was obtained immediately following the proton spectrum
without removing the sample from the NMR probe. Because
of signal-to-noise considerations,13C satellites were not observed
in the deuteron spectra and hence13CD couplings were not
obtained.

3. Theoretical Background

In this section, the theory underlying the analysis of our
experimental results for ethane and its isotopomers will be
discussed. We shall emphasize the role of a contribution to the
dipolar and quadrupolar couplings that is often not considered,
viz. the so-called vibration-rotation interaction. It is in a sense
unfortunate that in the original development of the theory of
solutes dissolved in nematic phases fictitious rigid solutes were
taken as a starting point.34,35Later it was realized, almost as an
afterthought, that for a more realistic description vibrational
corrections should also be incorporated.20-22 In the present
analysis we shall takenonrigid solute molecules as our starting
point, and we shall see how, in addition to the well-known
vibrational corrections, the vibration-rotation contribution then
arises quite naturally.

11028 J. Phys. Chem. A, Vol. 109, No. 48, 2005 Burnell et al.



The orientational order of a solute dissolved in a nematic
liquid crystal arises from the anisotropy∆F ) F| - F⊥ in the
mean liquid-crystal field, which often has cylindrical symmetry
around the direction of the space-fixed magnetic field direction,
Z. The potential,U, that describes the interaction leading to
solute orientational order in this anisotropic mean field is given
by13,25

with the orientation operator

wherek andl are molecule-fixed axesx, y, andz for the solute
(see Figure 1) and cosθkZ is the direction cosine between the
molecule-fixedk axis and the space-fixedZ axis. The Einstein
convention that implies summation over repeated indices that

indicate Cartesian coordinates is used throughout this paper.
The quantity∆F ) F| - F⊥ is the anisotropy of the liquid-
crystal mean field interacting with the solute. The potential is
a function of both the vibrational normal modes,Qm, of the
solute and of the Euler angles,Ω, that describe its orientation.
In principle, this potential couples vibrational and reorientational
motions.

In the potential defined in eq 1 it is assumed that the
interaction between solvent and solute can be written in a simple
bilinear form, in which solvent and solute properties are
introduced in a factorized manner. The simple model that we
employ here gives a picture of the liquid-crystal environment
as providing an average second-rank mean field tensor,Fij, that
interacts with some second-rank tensorial property,âij, of the
solute molecule. Tensorâij is supposed to be determined by
the electronic structure and hence the geometry of the solute
molecule, and therefore depends on its vibrational (normal)
coordinates. Because this potential will be used to predict
second-rank tensorial properties such as dipolar and quadrupolar
couplings, there is no need to consider possible higher-order
terms. It should be stressed that the form of the potential defined
in eq 1 does not require specific knowledge of the orientation
mechanism. The interaction is written as∆Fâkl(Qm), but the
values of these quantities are unknown without specific as-
sumptions about the actual nature of the orienting interaction.
Moreover, there is no a priori reason that a single mechanism
should dominate the orienting process. Hence, the∆Fâkl(Qm)
quantities should in general be viewed as a sum of contributions
∆Fi âkl

i (Qm) for every interaction,i.
We shall now treat the potential,U, of eq 1 as a perturbation

on the zeroth-order problem, for which we take the harmonic

TABLE 1: Experimental and Scaled Dipolar and Quadrupolar Couplings (in Hz) from Solutes in ZLI 1132 at 298 Ka

CH3-CH′3 13CH3-CH′3 CH3-CD3 CH3-CH′2D 13CH3-CH′2D CH3-13CH′2D
experimental couplings from separate tubes

DHH 647.593 (15) 647.263 (23) 654.296 (7) 632.335 (13) 632.491 (31) 632.545 (32)
DHH′ -257.407 (12) -257.259 (31) -251.92 (18) -252.023 (42) -252.004 (44)
DHD -40.019 (20) -38.527 (25) -38.466 (56) -38.507 (52)
DDD 15.636 (16)
DH′D 97.873 (34) 97.886 (59) 97.904 (60)
DH′H′ 628.946 (24) 629.112 (56) 629.156 (50)
DCH 395.011 (80) 385.977 (86) 381.578 (107)
DCH′ -118.054 (73) -115.815 (98) -115.38 (85)
BD -2512.178 (20) -2478.769 (23)

experimental couplings from solutes in the same tube
DHH 609.328 (8) 607.742 (4) 608.815 (4)
DHH′ -242.216 (7) -242.569 (3)
DHD -37.191 (3) -37.088 (4)
DDD

DH′D 94.227 (5)
DH′H′ 605.503 (7)
DCH

DCH′

couplings from separate tubes scaled toDHH values from same tube
DHH 609.33 609.02 607.74 608.82 608.97 609.02
DHH′ -242.20 -242.06 -242.55 -242.65 -242.63
DHD -37.17 -37.09 -37.04 -37.07
DDD 14.52
DH′D 94.23 94.25 94.26
DH′H′ 605.55 605.71 605.75
DCH 371.67 371.62 367.39
DCH′ -111.08 -111.51 -111.09
BD -2333.43 -2386.57

a Experimental couplings (in Hz) for CH3-CD3 in EBBA at 300 K are:DHH ) 565.531 (17);DHD ) -34.726 (20);DDD ) 13.521 (16); andBD

) -2118.029 (20).J couplings in Hz from29-33 used in the analysis are: CH3CH′3: JHH′ ) 8.0; 13CH3CH′3: JHH′ ) 8.0,JCH ) 125.0,JCH′ ) -4.5;
CH3CD3: JHD ) 1.23,JDD ) -0.29; CH3CH′2D: JHH′ ) 8.0, JHD ) 1.23,JH′D ) -1.92; 13CH3CH′2D: JHH′ ) 8.0, JHD ) 1.23,JH′D ) -1.92,JCH

) 125.0,JCH′ ) -4.5, JCD ) -0.7; CH3
13CH′2D: JHH′ ) 8.0, JHD ) 1.23,JH′D ) -1.92,JCH′ ) 125.0,JCH ) -4.5, JCD ) 19.0

Figure 1. Ethane, thex, y, andz axes are fixed in the CH2D group.

U ) - 1
3

∆Fâkl(Qm) Skl(Ω) (1)

Skl(Ω) ) 3
2

cosθkZcosθlZ - 1
2

δkl (2)
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approximation for the vibrational problem and the rigid rotor
for the rotational degree of freedom. The zero-order wave
function will then be a simple product of harmonic oscillator
wave functions for each normal mode and a rigid rotor wave
function.

The observables that we wish to calculate are the dipolar and
quadrupolar couplings that are measured by means of NMR.
These observables have the following general form

that is, they depend on both the rotational and vibrational
coordinates and have a multiplicative structure. In particular,
we shall be interested in thermodynamic expectation values of
operator A

wheren labels the rotational-vibrational quantum states and
Pn is the familiar Boltzmann factor. If we neglect vibrational
excitation at temperatureT, then without the perturbation of eq
1 we find

where|0〉 is the vibrational ground state andJ is a shorthand
notation for all rotational quantum numbers that label the
unperturbed rotational states. It can be shown easily that the
sum in eq 5 vanishes for a rigid rotor so that for a freely rotating
and vibrating molecule (or for one interacting with its environ-
ment in an isotropic way) observables of the form given in eq
3 will have a vanishing expectation value. To get a finite
contribution, one has to take into account the change in the
rotational-vibrational wave function induced by the anisotropic
interaction of eq 1. By standard perturbation theory we have to
first order

where the sum is over all vibrational and rotational excitations.
Theâ tensor describes some electronic property of the solute

and can be expanded in a truncated Taylor series in terms of
the normal coordinates,Qm, of the solute

The normal coordinates,Qm, stand for small displacements away
from the equilibrium structure. The derivatives are evaluated
at the equilibrium structure,e, of the solute. The choice of
normal coordinates is not essential; the Taylor expansion of eq
7 could also be formulated in terms of other coordinates such
as Cartesian displacement coordinates, symmetry displacement
coordinates, or internal displacement coordinates. It is important
to note at this point that the use of truncated Taylor expansions
can be expected to be realistic only for small-amplitude
vibrational modes. The large-amplitude torsional internal motion
cannot be dealt with in the same spirit. The incorporation of
the torsional mode will therefore be deferred to Section 4.

Inserting eq 7 into eqs 1 and 6 and using the properties of
the harmonic oscillator wave functions, we obtain13

where the second term contains only rotational excitations and
the third term excitations where only one normal mode is excited
once. Hence, the sum overm is a sum over all normal modes.
Using this perturbed wave function in eq 4 to calculate the
perturbed expectation value of the operatorA, we obtain to first
order in∆F

For P(1)(T) we find

The second contribution toP(1)(T) contains the same summation
as eq 5 and therefore vanishes. Equations 8-10 completely
determineA(T) in terms of matrix elements ofSij with respect
to rigid-rotor wave functions. These matrix elements can be
worked out easily in the spherical and symmetric top cases.

We now expandaij(Qm) in a Taylor series up to and including
the second-order term

Inserting this expression into eq 9 we obtain

with

and

We obtain expressions forAa(T) andAh(T) that are similar to

A(Qm,Ω) ) akl(Qm)Skl(Ω) (3)

A(T) ) ∑
n

Pn(T) 〈n|A(Qm, Ω)|n〉 (4)

Pn(T) ) e-En/kT/∑
j

e-Ej/kT

A(0)(T) ) 〈0| akl(Qm)| 0〉 ∑
J

PJ
(0)(T) 〈J|Skl(Ω)| J〉 (5)

|0J〉(0 + 1) ) |0J〉(0) + ∑
nJ′*0J

|nJ′〉〈nJ′|U|0J〉

E0J
(0) - EnJ′

(0)
(6)

âkl(Qm) ) âkl
e +∑

m

(∂âkl/∂Qm)eQm + .... (7)

|0J〉(0+1) ) |0J〉(0) -
1

3
∆Fâkl

e ∑
J′*J

|0J′〉 〈J′|Skl|J〉

EJ
(0) - EJ′

(0)
-

1

3
∆F ∑

m,all J′ x p

2ωm
(∂âkl

∂Qm
)e

|mJ′〉
〈J′|Skl|J〉

EJ
(0) - EJ′

(0) - pωm

(8)

A(T) ) ∑
J

PJ
(1)(T) (0)〈0J|aij(Qm)Sij(Ω)|0J〉(0) +

2 ∑
J

PJ
(0)(T) (0)〈0J|aij(Qm)Sij(Ω)|0J〉(1) (9)

PJ
(1)(T) ) - PJ

(0)(T) EJ
(1)(T)/kT + PJ

(0)(T) ∑
J′

PJ′
(0)(T) EJ′

(1)(T)/kT

) - PJ
(0)(T) EJ

(1)(T)/kT (10)

EJ
(1)(T) ) - 1

3
∆Fâkl

e 〈J|Skl|J〉

aij(Qm) ) aij
e + ∑

m
( ∂aij

∂Qm
)e

Qm +
1

2
∑
m, n

( ∂
2aij

∂Qm∂Qn
)e

QmQn + ...

(11)

A(T) ) Arig(T) + Aa(T) + Ah(T) + Anonrigid(T) (12)

Arig(T) ) ∑
J

PJ
(1)(T) aij

e 〈J|Sij|J〉 -

2

3
∆Faij

e âkl
e ∑

J,J′(J′*J)

PJ
(0)(T)

〈J|Sij|J′〉〈J′|Skl|J〉

EJ
(0) - EJ′

(0)
(13)

Anonrigid(T) )

-
2

3
∆F ∑

m,J,J′
PJ

(0)(T)
p

2ωm
( ∂aij

∂Qm
)e (∂âkl

∂Qm
)e 〈J|Sij|J′〉〈J′|Skl|J〉

EJ
(0) - EJ′

(0)- pωm

(14)

11030 J. Phys. Chem. A, Vol. 109, No. 48, 2005 Burnell et al.



that for Arig(T) by replacingaij
e in eq 13 by

The first three terms in eq 12 involve an averaging over
vibrational and rotational motions in which these degrees of
freedom are strictly decoupled. The last term is the lowest-order
contribution that arises from a correlation that exists between
the vibrational and rotational motions. Higher-order terms that
result from this correlation have been neglected.

The first three terms of eq 12 result in the usual equilibrium,
anharmonic, and harmonic contributions to the dipolar couplings
after the appropriate thermal averages over the vibrational
motions have been taken into account. Given the rigid equilib-
rium structure, the first contribution to eq 12 can be calculated.
To calculate the anharmonic and harmonic contributions to the
dipolar couplings, detailed knowledge about experimental or
theoretical force fields is required. For most simple molecules
the harmonic force field is relatively well-known, but informa-
tion on the anharmonic force field is often lacking.

For a harmonic vibrational potential, the relevant results can
be summarized as follows

where νm is the vibrational quantum number andωm is the
vibrational frequency of normal modem. By taking a quantum
average over all vibrational states36,37 we obtain

from which the required thermal average of〈QmQn〉 is evaluated
readily.

For a harmonic potential, the vibrational quantum average
of each normal coordinate〈Qm〉 is zero. Moreover,〈Qm

p Qn
q〉 )

0 whenever one of the exponents,p or q, is odd. However, for
an anharmonic potential the quantum averages over totally
symmetric normal modes need not vanish. These quantum
averages depend on the higher-order anharmonic cubic and
possibly quartic force fields. When the semidiagonal cubic
anharmonic force constantsΦmll of the potential expressed in
normal coordinates are known, we have36-38

Boltzmann thermal averages are then obtained as in the case of
the harmonic contributions (see eqs 16 and 17).

At this point two simplifying assumptions can be made. First,
for the ethanes the rotational level spacings are small compared
to kT. Hence, the full quantum-mechanical treatment of the
rotational degree of freedom can be replaced by classical
averaging over all orientations. Second, the rotational energy
differences in eq 14 are small compared to the vibrational level
spacings, withJ andJ′differing by two at most. Therefore, the
familiar closure relationship can be employed, and we obtain

The relevant classical thermal averages can be calculated using
Boltzmann statistics

The〈Skl〉 rotationsare the familiarSkl Saupe order parameters that
describe the orientational order of the solute in the liquid-crystal
solvent. In this context, we note that for molecules such as H2

and its isotopomers, where rotational splittings are significant
in comparison tokT ≈ 200 cm-1, quantum-mechanical averag-
ing over the overall rotation is required to explain the observed
isotope effects on the orientational order.5

We now focus on the dipolar couplings. Because the rotational
degree of freedom can be treated classically, considerable
simplification is obtained for the equilibrium, anharmonic, and
harmonic contributions

with

Here cos θµν,k signifies the direction cosine between the
internuclearµν-direction and the molecule-fixedk-direction, and
rµν is the instantaneous internuclear distance.

The terms in eq 22 are

Expressions for the derivatives (∂dkl,µν/∂Qm)e and (∂2dkl,µν/
∂Qm∂Qn)e have been given in various places.11,20,23,39It should
be noted that for small orientational order (when only terms
proportial to∆F are carried in the expansion of the exponential
that contains the orienting potential in eqs 20 and 21) the
equilibrium, anharmonic, and harmonic contributions to the
dipolar couplings are proportional to the solute orientation
parameters,Skl, whereas the nonrigid contribution shows a
different dependence. All four contributions scale with∆F (the
anisotropy in the liquid-crystal field) if terms of order (∆F)2

are neglected. For the quadrupolar couplings, expressions very

∑
m

( ∂aij

∂Qm
)e

〈Qm〉T and∑
m, n

( ∂
2aij

∂Qm∂Qn
)e

〈QmQn〉T

〈QmQn〉 ) δmn〈νm|Qm
2|νm〉 (15)

〈νm|Qm
2|νm〉 ) h

2πωm
(νm + 1

2) (16)

〈νm + 1
2〉

T
) 1

2
coth(( h

2π) ωm

2kT) (17)

〈Qm〉 ) -
1

2ωm
2
∑

l

Φmll 〈νl| Ql
2|νl〉 (18)

Anonrigid )
1

3
∆F∑

m
( ∂aij

∂Qm
)e( ∂âkl

∂Qm
)e 1

ωm
2

〈SijSkl〉rotations (19)

Skl ) 〈Skl〉rotations)
∫Skl exp(-U(Ω)/kT) dΩ

∫ exp(-U(Ω)/kT) dΩ
(20)

〈SijSkl〉rotations)
∫SijSkl exp(-U(Ω)/kT) dΩ

∫ exp(-U(Ω)/kT) dΩ
(21)

Dµν ) 〈dkl,µν〉vibrations〈Skl〉rotations+ 〈dkl,µνSkl〉vibrations,rotations)

Dµν
e + Dµν

a + Dµν
h + Dµν

nonrigid (22)

dkl,µν ) -
hγµγν

4π2
(cosθµν,k cosθµν,l/rµν

3) (23)

Dµν
e ) dkl,µν

e Skl (24)

Dµν
a )∑

m
(∂dkl,µν

∂Qm
)e

〈Qm〉TSkl (25)

Dµν
h )

1

2
∑
m, n

( ∂
2dkl,µν

∂Qm∂Qn
)e

〈QmQn〉TSkl (26)

Dµν
nonrigid )

1

3
∆F ∑

m
(∂dkl,µν

∂Qm
)e( ∂âij

∂Qm
)e 1

ωm
2

〈SklSij〉rotations (27)
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similar to those of the dipolar ones can be obtained. Anisotropies
in indirect couplings are neglected throughout this paper.

The truncation of the Taylor expansion of theâ tensor after
the linear term leads to a number of a priori unknown parameters
in the description, viz.∆Fâkl

e and ∆F(∂âkl/∂Qm)e. Within the
Born-Oppenheimer approximation, theâ tensor is transferable
from one isotopomer to the next. The isotopic dependence of
the derivatives of theâ tensor with respect to the normal
coordinates is not trivial; there are subtle effects that have to
do with the Eckart conditions that are usually invoked to obtain
an optimal separation of vibrational and rotational motions.11,13

The above parameters are not all independent; they depend on
the point group symmetry of the solute in its equilibrium
geometry. The dependencies between the parameters can
therefore best be derived by formulating the problem in terms
of symmetry coordinates, rather than normal coordinates. For
more details, the reader is referred to the literature.11,13

4. Results and Discussion

4.1. Ethane Dipolar Couplings.A consistent set of experi-
mental NMR dipolar couplings for ethane and its isotopomers
studied in the present work is given in Table 1. These couplings
are the starting point for our analysis. Ideally one would want
to calculate all of the contributions to the dipolar couplings given
in eq 22 from information available in the literature to see to
what extent the experimental couplings can be reproduced.

The theory in Section 3 was developed in terms of Taylor
expansions around the equilibrium geometry of the ethane
molecule. This choice has been made for a very good reason.
The equilibrium structure represents the location of the minima
of the potential energy surface, is not affected by molecular
vibrations, and is isotope-independent. Hence, all of the isoto-
pomers of ethane possess the same equilibrium structure. The
use of the equilibrium geometry is important for another reason.
In principle, the vibrational and rotational degrees of freedom
cannot be decoupled completely. To deal with this problem,
the Eckart conditions of zero angular momentum40 that lead to
the definition of body-fixed axes are imposed. To treat the
different ethane isotopomers on the same footing as much as
possible, the use of the equilibrium geometry appears to be a
judicious choice.11

If structural data are derived from spectroscopic experiments
of any sort, then molecular zero-point vibrations are always
present and have to be accounted for. Ideally, one would wish
to obtain accurate data for the equilibrium structure of the
molecule, but this requires very detailed information about the
harmonic and anharmonic molecular force field. Usually the
harmonic force field is available to a sufficient degree of
accuracy. In contrast, the anharmonic force field is known for
only a limited number of small molecules, and ethane is not
among them. Hence, the equilibrium structure for ethane is not
available, and consequently the “rigid” contributionDµν

e of eq
24 cannot be calculated. This clearly presents a problem.

In general, for two nuclei, 1 and 2, at a fixed distancere,
both located on thez axis, withx andy perpendicular toz, the
presence of vibrations leads to small displacements (∆x1, ∆y1,
∆z1, ∆x2, ∆y2, and∆z2). The so-calledrg structure is defined
as

with ∆z) ∆z1 - ∆z2 and so forth, and with the angular brackets

signifying averaging over all vibrational motions. The expansion
has been truncated after terms of order 2. The second-order
terms can be evaluated if the harmonic force field is known.
The first-order term〈∆z〉 requires knowledge of the anharmonic
force field. Unfortunately, the only experimental structure
available for ethane is the so-calledrz structure,17 which has
both methyl groups in the preferred staggered configuration (rCH

) 1.0940 Å,rCC ) 1.5351 Å,∠HCC ) 111.17°). Thisrz structure
is related tore in the following way41,42

To proceed we assume that, instead of starting from the preferred
re structure, the slightly different experimentalrz structure17 can
be employed to calculate

with eq 22 becoming

The ensuing isotope dependencies that are inherent in this choice
are ignored. The contributionsDµν

z ) Dµν
e + Dµν

a , which
include averaging of classical internal rotation about the CC
bond (vide infra), are presented in Table 2 and are seen to
dominate over the various vibrational effects.

The harmonic contribution can be obtained from the experi-
mental harmonic force field,Fij, defined in terms of symmetry
displacement coordinates and based on therz structure.19

Because the NMR suite of least-squares fitting programs
employed to obtain optimal correspondence between experi-
mental and calculated couplings computes harmonic corrections
in terms of internal displacement coordinates, a transformation
of the force field in terms of symmetry coordinates to one in
terms of internal coordinates is required. How to perform this
transformation is described in detail in ref 43. The so-called
valence force constants,kij, expressed in terms of the symmetry
force constants,Fij, are tabulated in ref 18. The redundancies
in this procedure are dealt with by setting a number ofkij values
deemed to be small equal to zero. The harmonic corrections to
the dipolar couplings are calculated and listed in Table 2. The
torsional mode that belongs to theA1u irreducible representation
of theD3d group (and cannot couple with any other vibrational
mode) is not included in this treatment and will be considered
separately.

As indicated before, the torsional motion must be treated
separately for two reasons. First, the truncated Taylor expansions
employed in the treatment of small-amplitude normal modes
are inadequate for large-amplitude internal rotation. Second, the
coupling between torsional motion and overall rotation must
be considered.14-16

The torsional potential energy,V(τ), possesses 3-fold peri-
odicity as a function of the torsional angle,τ, and can be
expanded in a Fourier series truncated after the second term as

Experimental values for the quantities that determine the height
and shape of the barrier are known and areV3 ) 2.882 kcal/
mol andV6 ) 0.020 kcal/mol.17 Because the torsional motion
does not couple to any other vibrational mode, a separation of
variables can be performed leading to a one-dimensional

rg ) re + 〈∆z〉 + 1
2re

(〈∆x2〉 + 〈∆y2〉) + .... (28)

rz ) re + 〈∆z〉 (29)

Dµν
z ) dkl,µν

z Skl (30)

Dµν ) Dµν
z + Dµν

h + Dµν
nonrigid (31)

V(τ) )
V3

2
(1 - cos 3τ) +

V6

2
(1 - cos 6τ) + .... (32)
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Schrödinger equation for the torsional motion whereV(τ)
represents the potential energy. TruncatingV(τ) after theV3 term,
this differential equation reduces to the so-called Mathieu
equation whose eigenvalues and eigenfunctions have been
tabulated.16,44,45 In principle, theV6 term can be taken into
account with perturbation theory. At a given temperature, the
dipolar couplings can then be calculated as an expectation value
of the dipole operator, while obtaining the thermal average over
all of the torsional levels populated according to the appropriate
Boltzmann factors. Hence, the full quantum-mechanical treat-
ment of the torsional problem can be performed, albeit with a
considerable amount of effort.

Now we turn to the problem of coupling between torsional
and overall rotational motions. In the absence of this coupling,
the torsional-rotational problem can be described in terms of
wave functions that are products of torsional wave functions,
obtained following the above prescriptions, and rigid rotor wave
functions appropriate for the overall rotation of the molecule.
In principle, the torsional-rotational coupling can now be
incorporated via perturbation theory. Clearly, this procedure is
expected to converge much better for high than for low torsional
barriers. In the case of ethane, the separations between rotational
levels are much smaller than those between torsional levels.
This situation defines the so-called high-barrier limit. In this
limit, there are three equivalent and almost independent potential
wells. Tunneling splittings arising from the torsional-rotational

coupling are small for low torsional levels and increase for levels
closer to the top of the barrier. Under our experimental
conditions, the influence of the lower torsional levels dominates
completely because the higher torsional levels are hardly
populated. A detailed quantum-mechanical analysis shows that
in our experimental NMR study on ethane and its iso-
topomers the torsional-rotational interaction can be neglected
safely. This is not necessarily the case for high-resolution
spectroscopic studies, for example, those employing microwave
spectroscopy, where evidence for tunneling splittings can often
be observed.

Alternatively, the effect of the torsional motion on the dipolar
couplings can be computed by using classical averaging while
employing the untruncatedV(τ) potential of eq 32 and appropri-
ate Boltzmann weighting of the torsional potential. In such a
classical picture, tunneling effects do not exist. When we
compare our classical results with those of the full quantum-
mechanical treatment, the differences appear to be slight. This
is another indication that the neglect of tunneling effects arising
from the torsional-rotational interaction is warranted. In view
of all of the approximations that are involved in the full analysis
of our NMR results, only results from the classical averaging
procedure will be employed in the following. This classical
averaging over the torsional motion is incorporated in the dipolar
couplings calculated from therz structure presented in Table 2.

So far the contribution to the dipolar couplings arising from

TABLE 2: Scaled Experimental and Calculated Dipolar Couplings Plus ContributionsDµν
z , Dµν

h , and Dµν
nonrigid to the Calculated

Dipolar Couplings (in Hz) from Solutes in ZLI 1132 at 298 K

Dµν
exptl

(scaled)
Dµν

calcd

eq 31 Dµν
exptl- Dµν

calcd
Dµν

z

eq 30
Dµν

h

eq 26

Dµν
nonrigid

from ref 25
see text

CH3-CH′3 DHH 609.328 609.396 -0.068 616.784 -3.617 -3.771
DHH′ -242.197 -242.083 -0.114 -239.704 -2.378 0

13CH3-CH′3 DHH 609.017 609.1 -0.083 616.536 -3.687 -3.749
DHH′ -242.058 -241.965 -0.093 -239.608 -2.357 0
DCH 371.671 371.606 0.065 397.628 -12.484 -13.538
aDH′H′ 609.017 609.13 -0.113 616.536 -3.634 -3.771
DCH′ -111.078 -110.829 -0.249 -110.54 -0.402 0.113

CH3-CD3 DHH 607.742 607.762 -0.02 615.882 -4.348 -3.771
DHD -37.172 -37.079 -0.093 -36.742 -0.337 0
DDD 14.523 14.377 0.147 14.513 -0.044 -0.092
BD -2333.433 -2298.654 -34.78

CH3-CH′2D DHH 608.815 608.885 -0.07 616.724 -4.067 -3.771
DHD -37.094 -36.98 -0.114 -36.626 -0.353 0
DHH′ -242.549 -242.532 -0.017 -240.222 -2.31 0
DH′D 94.233 93.911 0.322 94.816 -0.378 -0.527
DH′H′ 605.552 605.502 0.05 614.829 -4.547 -4.78
BD -2386.57 -2342.795 -43.78

13CH3-CH′2D DHH 608.965 609.058 -0.093 616.943 -4.136 -3.749
DHD -37.035 -36.973 -0.062 -36.623 -0.35 0
DHH′ -242.648 -242.652 0.004 -240.36 -2.292 0
DCH 371.62 371.561 0.059 397.891 -12.791 -13.538
DH′D 94.245 93.943 0.302 94.852 -0.382 -0.527
DH′H′ 605.712 605.667 0.045 615.018 -4.571 -4.78
DCH′ -111.507 -111.456 -0.051 -111.094 -0.386 0.025

CH3-13CH′2D DHH 609.017 609.13 -0.113 616.98 -4.079 -3.771
DHD -37.075 -36.994 -0.081 -36.643 -0.351 0
DHH′ -242.63 -242.611 -0.019 -240.317 -2.293 0
DCH -111.088 -110.854 -0.234 -110.62 -0.347 0.113
DH′D 94.262 93.938 0.324 94.855 -0.389 -0.527
DH′H′ 605.754 605.708 0.046 615.095 -4.618 -4.769
DCH′ 367.385 367.381 0.004 394.395 -12.972 -14.043

EBBA
CH3-CD3 DHH 565.531 565.534 -0.003 576.806 -4.072 -7.199

DHD -34.726 -34.726 0 -34.411 -0.315 0
DDD 13.521 13.384 0.137 13.592 -0.041 -0.167
BD -2118.029 -2152.81 34.78

a The experimental value ofDH′H′ in 13CH3-CH′3 is set equal toDHH in the spectral fitting program.
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the reorientation-vibration interaction has not been taken into
account. A least-squares fit on the complete set of dipolar
couplings (calculated for therz structure, corrected for harmonic
vibrations, and including the effect of the barrier classically)
was carried out neglecting this contribution. In the fit only the
independent Saupe orientation parameters of the isotopomers
(1 for each molecule with axial symmetry, 3 for each molecule
with a plane of symmetry, hence 12 in total) were varied while
all of the structural parameters and those defining the barrier
were kept fixed. Although convergence was reached, the rms
value of the fit was not satisfactory, with differences between
experimental and calculated dipolar couplings well outside their
error ranges. The Saupe order parameters obtained for all of
the molecules and the resulting rms are given in Table 3. A
series of fits was also performed in which structural parameters
and/or the barrier parameter,V3, were varied. This led in all
cases to much better quality fits with acceptable rms values,
but the changes required in structural and/or barrier parameters
were unreasonably large.

Next, the problem of calculating the contributions to the
dipolar couplings arising from the reorientation-vibra-
tion interaction was considered. In such a calculation, one
has to contend with a large number of unknown parameters:
(i) ∆F 〈âzz - 1/2(âxx + âyy)〉, which signifies the product of
∆F and the anisotropy of theâ tensor averaged over all
vibrations; and (ii) parameters of form∆F(∂âkl/∂Qm)e, one for
each one-dimensional normal mode, and two for each doubly
degenerate normal mode of the ethane molecule. Of course, one
can try to obtain these unknowns by fitting the calculated
to the observed dipolar couplings. However, together with
the unknown Saupe order parameters that also have to be
obtained from the fit, the problem becomes underdetermined
quickly.

At this point, an alternative strategy was developed. Contribu-
tions to all of the dipolar couplings arising from the reorienta-
tion-vibration coupling,Dµν

nonrigid, were calculated from the

theoretical expressions in a previous extensive study on methyl
fluoride and a series of its isotopomers. The relevant unknown
parameters were obtained from a least-squares fitting procedure
to all observed dipolar couplings25 (see eq 27). In the CH3F
study, excellent agreement was generally obtained between
calculated and observed dipolar couplings. Because there are
ample indications that the harmonic and anharmonic force fields
for a methyl group do not depend strongly on the molecule that
the methyl group is part of,26 there is justification for the
transferability of the quantitiesDµν

nonrigid from methyl fluoride to
ethane. Some nonrigid contributions can be transferred im-
mediately, whereas for others some degree of improvisation is
required. The contribution to the ethane dipolar coupling
between a proton or a deuteron in one methyl group and the
13C in the other methyl group is obtained from the nonrigid
contribution to the HF or DF coupling in methyl fluoride by
scaling with the appropriate ratio between F and13C gyromag-
netic ratios. The nonrigid contribution to the coupling between
protons or deuterons in different methyl groups in the ethanes
was set equal to zero.

After transfer of theDµν
nonrigid contributions from the methyl

fluoride to the ethane case, a least-squares fitting procedure was
performed in which structure and barrier parameters were kept
fixed, and where only the Saupe orientation parameters for the
isotopomers were varied (see Table 3). Clearly, the introduction
of the nonrigid contributions in the manner discussed above
led to a very large improvement in the rms obtained in the fit.
A last improvement that was introduced has to do with the fact
that there is no way of knowing whether the experimental
conditions in the methyl fluoride and ethane experiments are
truly identical. However, because theDµν

nonrigid quantities scale
with the anisotropy,∆F, of the liquid-crystal field, a final least-
squares analysis was performed in which, in addition to the
Saupe order parameters, only a single multiplication factor that
scales all of the nonrigid contributions was varied. This
procedure led to an even better rms than before. The dipolar
couplings calculated from this fit are presented in Table 2; the
Saupe order parameters, the scaling factor, and the rms are
presented in Table 3. The calculation shows that the nonrigid
couplings have to be scaled up by only 15% compared to what
they are in the independent CH3F experiments. The agreement
between calculated and experimental dipolar couplings is
excellent and lends strong support to the present approach where
nonrigid contributions based solely on methyl group transfer-
ability are employed.

As shown in Table 3, the order matrices for the CH3-CH2D
isotopomers in ZLI 1132 are close to those expected for
cylindrical symmetry. This indicates that the role of the CD
bond does not deviate much from that of the CH bond. Also
from Table 3, we note that the degrees of orientational order in
ZLI 1132 and EBBA are very similar; this is consistent with a
picture in which ethane behaves as a “magic solute”2 where
the interaction between a small solute quadrupole moment and
an average solvent electric field gradient is expected to be minor
compared to dominant size and shape effects. This situation
differs from that of solutes with an appreciable quadrupole
moment (such as methyl iodide, to be discussed in section 4.3),
resulting in very different orientational order in the same liquid
crystals, ZLI 1132 and EBBA.

4.2. Ethane Quadrupolar Couplings. Deuterium quad-
rupolar couplingsBD

observedfor isotopomers CH3CD3 and CH3-
CH2D in ZLI 1132 and CH3CH2D in EBBA have been
measured. The intramolecular electric field gradient tensor that
interacts with the deuterium quadrupole moment is assumed

TABLE 3: Orientational Order Parameters, Nonrigid Scale
Factors, and rms Values from Fits to Dipolar Couplings for
Solutes in ZLI 1132 at 298 K

order parameter no nonrigid

nonrigid
from
CH3F

CH3F
nonrigid
scaled

CH3-CH3

Szz 0.056398 (63) 0.056645 (9) 0.056681 (3)
13CH3-CH3

Szz 0.056146 (58) 0.056593 (8) 0.056658 (3)
CH3-CD3

Szz 0.056253 (98) 0.056554 (13) 0.056598 (5)
CH3-CH2D
Sxx -0.028307 (126)-0.028410 (17)-0.028425 (6)
Szz 0.056337 (95) 0.056632 (13) 0.056676 (5)
Sxz 0.001184 (519) 0.000451 (71) 0.000344 (25)
13CH3-CH2D
Sxx -0.027883 (117)-0.028366 (16)-0.028436 (6)
Szz 0.055914 (82) 0.056596 (11) 0.056696 (5)
Sxz 0.002231 (471) 0.000615 (64) 0.000378 (24)
CH3-13CH2D
Sxx -0.028296 (122)-0.028418 (17)-0.028436 (6)
Szz 0.056322 (83) 0.056651 (11) 0.056699 (4)
Sxz 0.001678 (180) 0.000512 (25) 0.000341 (10)
nonrigid factor 0 1 1.146 (4)
rms/Hz 2.52 0.34 0.12

EBBA at 300 K
CH3-CD3

Szz 0.052348 (5) 0.052743 (2) 0.053007 (8)
nonrigid factor 0 1 1.670 (21)
rms/Hz 0.34 0.15 0.06
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to be axially symmetric about the CD bond. For a rigidre or
rz structure, the deuterium coupling constant is then defined
as12,13

whereV|
rig ) Vcc

D is the negative of the electric field gradient at
the site of the deuterium nucleus, defined along the directionc
of the CD bond,eQD is the nuclear quadrupole moment of the
deuterium nucleus, andScc is the Saupe orientation parameter
of the CD bond.Scc can be expressed in terms of the Saupe
order parameters,Skl, defined in terms of the molecule-fixed
axes,x, y, andz, as

where cosθkc is the direction cosine of angleθ between thek
axis and the CD bond direction. Hence,Scc can be calculated
from theSkl values obtained from the fit to the dipolar couplings.
The application of vibrational corrections to the experimental
quadrupolar couplings is notoriously complicated and is there-
fore neglected.46 BD

rig can be calculated only if a value for the
intramolecular field gradient,V|

rig, is known. However, the
quadrupolar couplings measured in ZLI 1132 and EBBA cannot
be reproduced with the same value ofV|

rig. If any fixed value
for this quantity is taken, then discrepancies arise. This is an
indication that the observed couplings,BD

observed, include an
extra liquid-crystal dependent term,BD

external, in addition toBD
rig.

As in previous studies on molecular hydrogen, methane, and
their isotopomers,7,12,13the discrepancies between experimental
and calculated quadrupolar couplings,BD

external, are ascribed to
the presence of an average external electric field gradient (at
the site of the deuteron nucleus) provided by the liquid-crystal
environment

Extensive previous studies have shown that for ZLI 1132 and
EBBA the average external field gradients are of similar
magnitude but of opposite sign. Because a reliable experimental
value foreV|

rigQD/h does not exist, we adjust its value to 177.9
kHz to obtain an equal but opposite discrepancy in the
quadrupolar couplings measured in ZLI 1132 and EBBA. The
experimental and calculated quadrupolar couplings obtained in
this way are given in Table 2. The value obtained foreV|

rigQD/h
is not unreasonable for a deuterium nucleus in a CD bond.
Moreover, apart from their magnitudes that are a factor of∼2
smaller than what was observed before with molecular hydrogen
and methane, the signs ofBD

external () experimental- calcu-
lated in Table 2) are consistent with what was found previously
for ZLI 1132 and EBBA. Similar findings were obtained for a
collection of aromatic solutes dissolved in ZLI 1132, EBBA
and a magic mixture of these component liquid crystals.47

Therefore, the present experiments on ethane and its isotopomers
lend additional support to the notion that average external
electric field gradients are important in these liquid crystals.

4.3. Implications for Other Solutes.Because the incorpora-
tion of the dipolar couplings arising from the reorientation-
vibration mechanism was found to be essential in the analysis
of our ethane results, using the same approach as discussed
above should be considered for other solutes as well. Because
the corrections to the dipolar couplings due to reorientation-
vibration correlation are known for13CH3F, they can be
transferred to other13CH3-containing molecules. In a recent

study, new results and literature data for13CH3I dissolved in a
large variety of thermotropic and lyotropic liquid-crystal solvents
were analyzed.1 In this analysis, harmonic vibrational corrections
were taken into account, but the reorientation-vibration interac-
tion was neglected entirely. It was found that for given CH and
HH internuclear distances, obtained from gas-phase microwave
spectroscopy, the HCH angle derived from the dipolar couplings
varied appreciably from one experiment to the next. Such
“solvent-dependent structures” are often rationalized in terms
of specific chemical interactions between solute and solvent or
as resulting from the exchange of the solute between several
“sites” in the liquid-crystal environment with different orien-
tational order. It is of interest to see what the effect of
incorporating reorientation-vibration corrections will be on the
13CH3I structure.

There are two problems in transferring the reorientation-
vibration corrections from13CH3F to 13CH3I because there is
no guarantee that the13CH3F and13CH3I results are obtained
under the same experimental conditions and with the same∆F
factor. In the ethane case, the latter complication invoked the
need to do some∆F scaling. Lacking this information, we
transfer the13CH3F nonrigid corrections to13CH3I assuming a
temperature of 302 K and otherwise identical experimental
circumstances. Moreover,13CH3F corrections are available only
for liquid crystals ZLI 1132 and EBBA. In Table 4, the ratios
of DCH/DHH are compared without (ê′ in column 5 of Table 41)
and with (ê′′ in column 6 of Table 4) the incorporation of
reorientation-vibration corrections. It is apparent that, despite
the above inadequacies in the procedure, these reorientation-
vibration corrections can explain the deviations of the factorê′
from 1.0 quite adequately. Hence, when reorientation-vibration
effects are accounted for, there is no need to invoke the concept
of solvent-dependent structures. In addition, it should be pointed
out that the reorientation-vibration corrections are not propor-
tional to the Saupe orientation parameters. Hence, their neglect
is especially detrimental in cases where the solute orientational
order is relatively small. This agrees with previous observations
in the literature.1

BD
rig ) 3

4h
eV|

rigQD Scc (33)

Scc ) Skl cosθkccosθlc (34)

BD
observed) BD

rig + BD
external (35)

TABLE 4: Nonrigid Corrections to Published Data for
Methyl Iodide in EBBA and ZLI 1132 a

DHH
exptl DCH

exptl DHH
exptl - DHH

nonrigid DCH
exptl - DCH

nonrigid ê′ ê′′

EBBA 168.71 150.7 173.87 136.31 0.901 1.056
213.07 194.5 218.23 180.11 0.882 1.003
243.2 214.8 248.36 200.41 0.911 1.026
262.87 239.51 268.03 225.12 0.883 0.985
271.67 239.95 276.83 225.56 0.911 1.016

ZLI 1132 990.4 794.29 993.67 806.1 1.003 1.020
1123.86 901.15 1127.13 912.96 1.004 1.022

a The ê parameters, which are unity for exact agreement between
the NMR dipolar couplings and the microwave structure of the methyl
group, are calculated from the following equations:

ê′ ) (DCH

DHH)exptl
(1 + pHH

h

1 + pCH
h )(gHH

gCH)
ê′′ ) (DCH

DHH)exptl
(1 + pHH

h + pHH
nonrigid

1 + pCH
h + pCH

nonrigid)(gHH

gCH)
We note that these definitions differ slightly from the ones given in
ref 1; however,ê′ is in fact the parameter plotted in Figures 1 and 2
of that paper. In these equations,pij

h is the harmonic vibrational
correction to the dipolar couplings (taken from ref 1) andpij

nonrigid )
Dij

nonrigid/Dij
microwave where Dij

microwave is calculated from Dij
exptl )

Dij
microwave(1 + pij

h) + Dij
nonrigid. The gij are geometrical parameters

calculated from the microwave structure.48
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5. Conclusions

Simple, well-characterized molecules dissolved in nematic
phases have proved to be extremely useful probes of the
intermolecular potential. After work on hydrogen and methane
and their isotopomers, an NMR study on ethane, a benchmark
example of a molecule possessing large-amplitude torsional
motion, dissolved in ZLI 1132 is undertaken. In addition, five
isotopomers have been studied and a consistent set of dipolar
and quadrupolar couplings is obtained for this series of solutes.
The averaging over the harmonic vibrational motions required
to correct the dipolar couplings for vibrational effects is
performed in the usual manner. The effect of the internal rotation
on the dipolar couplings is accounted for by classical averaging
over the torsional mode. The corrected dipolar couplings should
not be interpreted in terms of a reasonable molecular structure
unless effects of the reorientation-vibration interaction are taken
into account. Assuming that the reorientation-vibration con-
tributions that are known for the methyl group in methyl fluoride
are transferable to ethane, excellent agreement between observed
and calculated dipolar couplings on the basis of the ethane gas-
phase structure is obtained. These results convincingly show
that the interaction between liquid crystal and solute does not
lead to deformation of the gas-phase structure of the solute,
provided that the reorientation-vibration interaction is included.
Neglect of this effect is therefore generally not warranted.

Previously, the interpretation of the observed quadrupolar
couplings caused difficulty in experiments on deuterated iso-
topomers of molecular hydrogen and methane dissolved as
solutes in nematic liquid crystals.7,12,13 The discrepancies
between experimental and calculated quadrupolar couplings
were resolved by assuming that an average external electric field
gradient present in the liquid-crystal solvent interacts with the
deuterium nuclei in the solutes. The quadrupolar couplings
obtained for the deuterated ethanes in this work show very
similar discrepancies. The current results lend strong support
to the notion that average external electric field gradients present
in liquid-crystal solvents cannot be ignored in the interpretation
of measured quadrupolar couplings.

The transferability of the reorientation-vibration contribu-
tions to the dipolar couplings from a methyl group in one solute
(CH3F) to that in another (ethane) has important consequences.
Often changes in observed dipolar couplings that arise if
different liquid-crystal solvents are employed are interpreted
in terms of ad hoc effects, such as specific chemical interactions,
or in terms of solutes that exchange between various different
sites in the anisotropic environment. Inclusion of the reorienta-
tion-vibration effects for methyl groups following the same
procedure as outlined in this paper for ethane generally removes
the need to interpret changes in observed dipolar couplings by
invoking elusive chemical effects.
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